Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Am Coll Nutr ; 40(4): 327-332, 2021.
Article in English | MEDLINE | ID: covidwho-1087590

ABSTRACT

Objective: Vitamin D deficiency is common in the general population and diabetic patients, and supplementation with vitamin D is widely used to help lower oxidative stress and inflammation. The cytokine storm in SARS-CoV2 infection has been linked with both diabetes and Vitamin D deficiency. This study examined the hypothesis that supplementation with vitamin D, in combination with l-cysteine (LC), is better at reducing oxidative stress and thereby, more effective, at inhibiting the secretion of the pro-inflammatory cytokines, Interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in U937 monocytes exposed to high glucose concentrations. Methods: U937 monocytes were pretreated with 1,25 (OH)2 vitamin D (VD, 10 nM) or LC (250 µM) or VD + LC for 24 h and then exposed to control or high glucose (HG, 25 mM) for another 24 h. Results: There were significantly greater reactive oxygen species (ROS) levels in monocytes treated with HG than those in controls. Combined supplementation with VD and LC showed a more significant reduction in ROS (46%) in comparison with treatment with LC (19%) or VD (26%) alone in monocytes exposed to HG. Similarly, VD supplementation, together with LC, caused a more significant inhibition in the secretion of IL-8 (36% versus 16%) and MCP-1 (46% versus 26%) in comparison with that of VD (10 nM) alone in high-glucose treated monocytes. Conclusions: These results suggest that combined supplementation with vitamin D and LC has the potential to be more effective than either VD or LC alone in lowering the risk of oxidative stress and inflammation associated with type 2 diabetes or COVID-19 infection. Further, this combined vitamin D with LC/N-acetylcysteine may be a potent alternative therapy for SARS-CoV2 infected subjects. This approach can prevent cellular damage due to cytokine storm in comorbid systemic inflammatory conditions, such as diabetes, obesity, and hypertension.


Subject(s)
COVID-19 Drug Treatment , Cysteine/administration & dosage , Oxidative Stress/drug effects , SARS-CoV-2/immunology , Vitamin D/administration & dosage , COVID-19/immunology , Chemokine CCL2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Drug Therapy, Combination , Glucose/administration & dosage , Humans , Interleukin-8/metabolism , Monocytes/immunology , Monocytes/virology , U937 Cells , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/immunology , Vitamin D Deficiency/virology
2.
Free Radic Biol Med ; 161: 84-91, 2020 12.
Article in English | MEDLINE | ID: covidwho-1023568

ABSTRACT

There is a marked variation in mortality risk associated with COVID-19 infection in the general population. Low socioeconomic status and other social determinants have been discussed as possible causes for the higher burden in African American communities compared with white communities. Beyond the social determinants, the biochemical mechanism that predisposes individual subjects or communities to the development of excess and serious complications associated with COVID-19 infection is not clear. Virus infection triggers massive ROS production and oxidative damage. Glutathione (GSH) is essential and protects the body from the harmful effects of oxidative damage from excess reactive oxygen radicals. GSH is also required to maintain the VD-metabolism genes and circulating levels of 25-hydroxyvitamin D (25(OH)VD). Glucose-6-phosphate dehydrogenase (G6PD) is necessary to prevent the exhaustion and depletion of cellular GSH. X-linked genetic G6PD deficiency is common in the AA population and predominantly in males. Acquired deficiency of G6PD has been widely reported in subjects with conditions of obesity and diabetes. This suggests that individuals with G6PD deficiency are vulnerable to excess oxidative stress and at a higher risk for inadequacy or deficiency of 25(OH)VD, leaving the body unable to protect its 'oxidative immune-metabolic' physiological functions from the insults of COVID-19. An association between subclinical interstitial lung disease with 25(OH)VD deficiencies and GSH deficiencies has been previously reported. We hypothesize that the overproduction of ROS and excess oxidative damage is responsible for the impaired immunity, secretion of the cytokine storm, and onset of pulmonary dysfunction in response to the COVID-19 infection. The co-optimization of impaired glutathione redox status and excess 25(OH)VD deficiencies has the potential to reduce oxidative stress, boost immunity, and reduce the adverse clinical effects of COVID-19 infection in the AA population.


Subject(s)
COVID-19/pathology , Glucosephosphate Dehydrogenase Deficiency/genetics , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Vitamin D Deficiency/genetics , Black or African American/statistics & numerical data , COVID-19/mortality , Cytokine Release Syndrome/pathology , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/metabolism , Glutathione/metabolism , Humans , SARS-CoV-2 , Vitamin D/analogs & derivatives , Vitamin D/metabolism
3.
J Am Coll Nutr ; 39(8): 694-699, 2020.
Article in English | MEDLINE | ID: covidwho-641763

ABSTRACT

Early reports indicate an association between the severity of the COVID-19 infection and the widespread 25-hydroxy vitamin D deficiency known to exist in populations around the world. Vitamin D deficiency is extremely common among African American (AA) communities, where the COVID-19 infection rate is three-fold higher, and the mortality rate nearly six-fold higher, compared with rates in predominantly white communities. COVID-19 infection primarily affects the lungs and airways. Previous reports have linked 25-hydroxy vitamin D deficiency with subclinical interstitial lung disease. AA are at risk for lower cellular glutathione (GSH) levels, and GSH deficiency epigenetically impairs VD biosynthesis pathway genes. Compared with vitamin D alone, co-supplementation of vitamin D and L-cysteine (a GSH precursor) showed a better efficacy in improving levels of GSH and VD-regulatory genes at the cellular/tissue level, increasing 25(OH) vitamin D levels, and reducing inflammation biomarkers in the blood in mice studies. We propose that randomized clinical trials are needed to examine the potential of co-supplementation with anti-inflammatory antioxidants, vitamin D and L-cysteine in correcting the 25(OH)VD deficiency and preventing the 'cytokine storm,' one of the most severe consequences of infection with COVID-19, thereby preventing the adverse clinical effects of COVID-19 infection in the vulnerable AA population.


Subject(s)
Black or African American , COVID-19 Drug Treatment , Cysteine/therapeutic use , Dietary Supplements , Glutathione/metabolism , Vitamin D Deficiency/drug therapy , Vitamin D/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biomarkers/blood , COVID-19/ethnology , COVID-19/metabolism , COVID-19/mortality , Cysteine/pharmacology , Cytokines/metabolism , Epigenesis, Genetic , Genetic Predisposition to Disease , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/prevention & control , Mice , Vitamin D/analogs & derivatives , Vitamin D/blood , Vitamin D/pharmacology , Vitamin D Deficiency/ethnology , Vitamin D Deficiency/metabolism , Vitamins/blood , Vitamins/pharmacology , Vitamins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL